Design Project Proposal

ECE 496Y

Train Set Simulation Software

For a Web-Enabled Automated Train System

Professor Paul Chow

Group 2
Tuesday, October 27, 1998.

Simon Pawlowski

Abe Saikali

David Tam

Executive Summary
We are proposing to design and implement a web-controlled model train system. When the project is complete, a user will be able to control a physical train set from anywhere in the world via the internet. There are many hardware and software facets that must be considered upon the outset of the design. Our group will design and implement one of the key components of the software controlling the train.

The purpose of this project is to develop the train set simulation software. This software has the role of providing the train location to the user interface (UI). For the majority of the time, the physical sensors located at strategic sections of track will not be able to locate the train. This situation means the end user, who may be anywhere on the planet, would not observe any feedback from the UI. We propose to build the simulation software to extrapolate the train location between sensors. The software has the tasks of providing computation, storage, and basic safety control to the train set. Each of these tasks is handled by a separate major component: the control manager, the track manager, and the simulation engine. We propose to complete the simulation software by the end of November 1998, with total system integration expected by the end of February 1999. There is no budget required for the simulation project because it is completely software based.

Introduction

A multi-group project has been proposed to implement a web-controlled model train system. An actual train set will be controlled via the internet from any computer in the world. The software components of this project include a web-based user interface (UI), a simulator, a command interpreter, and low level drivers. The hardware components include a network protocol, a radio link controller, an engine controller, switch and light interfaces, and crossing and sensor interfaces. The user will use the UI to communicate their requests to the train set. The UI will interface to the train set via the simulation software. The simulator will then issue commands to the hardware to carry out the user’s requests.

Our group will develop the simulator component of the software. This component will periodically update the UI with the actual track status in real time. Data from the hardware will be interpreted to allow the user at the UI to see the track conditions at any moment. Train locations will be extrapolated for intervals between sensor readings by the simulator software. The software will have the task of providing basic safety control to prevent catastrophe on the train set. All tasks of the simulator will be handled by three major components: the control manager, the track manager, and the simulation engine. Minor components will include the interface to the UI, the track state and layout databases, and the interface to the command interpreter. This approach is shown in Figure 1. The simulation software will also receive requests from the UI that will be relayed to the hardware via the command interpreter. When the physical devices respond with data, the flow of information occurs in the opposite direction.

Proposed Program

Objectives

The overall objective of this project is to provide an accurate prediction on the location of the train. The simulation software will not provide advanced collision detection or train scheduling. These features are complicated to design and implement within the project time frame. Qualitative objectives include making the software modular, flexible, and expandable to allow for future work in subsequent years on the system. Future capabilities could include the advanced collision detection and train scheduling components mentioned above. In terms of performance objectives calculations, response to user requests, and update functions should be performed quickly and with low overhead. The time required to perform such operations must not allow the simulation data to be inconsistent with the physical conditions of the track.

Internal to the simulation software, the three major components have various process objectives. The development of these components will occur in parallel once the interfaces between these components have been defined. As long as each component meets its interface requirements, other factors from distant components should not affect its design and development.
Methods

Control Manager:

The simulator software requires a control component to interact with the UI and to act as a mediator between user requests and actual track status. The main function of the control component is to validate requests from the UI and to pass the requests to the physical track. It provides basic safety control but not advanced collision detection or scheduling. An example of basic safety control is preventing a switch from being activated while a train is occupying that particular track section. The control manager will respond to requests from the UI and also intermittently update it with actual track conditions.

It is desired to design a control manager that is both modular and reliable while made to have a simple interface between the UI and the rest of the simulator. It is vital that the control component validates every request correctly to prevent catastrophic results from occurring on the actual train track. This will require the control manager to have up-to-date information of the current track conditions in real time. With knowledge of the track status, all requests from the UI can be validated. Any change in track status will be communicated to the UI immediately so that the user can be assured of having the latest track information.

A modular control manager component will allow for future expansion of the project. The control manager will be designed to accommodate a growing set of defined requests from the UI. An increase in the command set will add to the users' control of the train track if desired in the future. Modularity would also provide for a more robust, fault tolerant system by simplifying the effort to upgrade the scheduling and collision avoidance algorithms.

The proposed communication between the UI and control manager is to occur through a TCP/IP connection. This will allow the UI to reside at any location that is connected to the internet. The simulator is proposed to be a multi-threaded process, allowing for the control manager to communicate to the rest of the simulator through globally defined variables. It is desired to communicate in this manner in order to permit the control manager to quickly query the track status with limited overhead.

It is important that a minimum set of commands be defined between the UI and the control manager to allow for communications between the two modules. This will require a period of discussion between the two groups working on the UI and control manager to establish a protocol that can be expanded in the future. The command set will support the following requests from the UI:

· change speed of the train

· move track switch position

· turn track light on or off

· change train crossing status

The following commands would be communicated back to the UI:

· response to request as OK or failed

· actual speed of train

· actual location of train

· actual switch position

· actual light status

· actual crossing status

The control manager will periodically query the track manager for the current track status and store the information in memory. Any changes from the previous polled track status will be communicated to the UI immediately. When a user request is sent via the TCP/IP connection the control manager will validate the request by inputting the actual track conditions and user requests into a fault tolerance algorithm. The fault tolerance algorithm is based on a set of rules that must be satisfied at all times, otherwise the control manager will send the appropriate track commands so that the track conditions comply with these rules. In order to develop the fault tolerance algorithm the physical properties of the track and train must be established such as available train speeds, track length, locations of crossings, etc.

Track Manager:

The main objective of the track manager component is to act as an interface between what the user sees and what the train is actually doing. The UI and the simulator are brought together at this key junction. The track manager polices information access and is the only application that is able to write to the track state database. Therefore, synchronization problems are avoided and there is a clear modular progression of events.

The track manager has two main responsibilities: (1) To read from the track layout database, which is user defined and describes the track. (2) To implement a second database called the track state database. The purpose of this second database is to provide both the UI and the simulator engine with information on the current state of the track. The track state database would include information such as the speed and direction of the train or trains, the positions of switches, lights, crossings, and other such information that may change dynamically.

The following is a general overview of how the track manager will interact with the rest of the project:

1. Collect track layout data from the UI and build a temporary track layout database.

2. Build the track state database based upon information extracted from the track layout database.

3. Accept updates of track condition from simulation engine.

4. Continuously check corresponding database entries to ensure they match. If entries do not match notify control manager.

5. When the simulation engine requests the next track piece, locate the data from the track layout database and return the result.

6. When called by the control manager to execute a physical change, relay the information to the simulator and update the proper fields of the track state database.

The track manager is essential to ensure that there is proper communication between the user and the train system hardware. Its job is to routinely check that all data is valid and up-to-date. In order to ensure the above conditions are met, the track manager must serve two main functions. The primary task is to keep an updated record of the track layout in a database. In order to represent the track in the simulation software, each track segment is represented by a data structure with pointers to adjacent pieces. Each segment can have one of approximately five possible shapes. These possibilities are shown in Figure 2. The second function of the track manager is to manage the track state database and ensure all data is coherent.

The track layout database is derived from data provided by the UI. The basic back end of this database is a linked list structure. The elements in the list will contain several pieces of information that describe the track segments and their layout. When a calculation regarding train location is performed on any piece, it can be derived with approximations as opposed to solving an integral over a curve. There is more information pertaining to this topic in the simulation engine section. The fields in the list will contain pointers to all adjacent pieces in order to allow the train to travel in either direction on the track. This method of storing track segments simplifies the abstraction of the track layout for computational purposes by eliminating geometric information. Therefore, the simulation software will work for an infinite number of tracks. Figure 3 describes the data structure to be implemented.

It is the responsibility of the track manager to ensure that all data is correct when the train is in operation. This data includes proper switch positions and actual train locations. The structure will be implemented using a two-field database. One field will contain user requests (e.g. speed up the train, change the position of a switch, etc.), and the other field will contain the current state of the physical track. In this way the track manager can inform the control manager of the track conditions and the status of user requests. The track manager is updated with the current track information through function calls by the simulation engine. In pure simulation mode, the simulation engine would return virtual track conditions to the track manager. The reason for allowing only one application to write into the track state database is to avoid the concurrency and synchronization problems that arise when multiple writers exist.

The UI depends on the track state database to determine where to draw the train on the user’s screen and to depict the direction of the train. It is essential for this database to be up-to-date and have valid entries to avoid mismatches between user requests and simulator responses. An example of the proposed track state database is given in Figure 4.

Track Piece
User Request
Actual State

Switch 1
Left
Left

Switch 2
Right
Right

Crossing 1
Up
Up

Crossing 2
Up
Up

Train 1 Speed
5 Km/h
3 km/h

Train 1 Position
Piece #27
Piece #27

Train 1 Direction
Counter Clockwise
Counter Clockwise

Train 2 Speed
2 km/h
2 km/h

Train 2 Position
Piece #69
Piece #69

Train 2 Direction
Counter Clockwise
Counter Clockwise

Figure 4: Example of an instance of the track state database
Simulation Engine:

The simulation engine is the computational component of the train set. It has two modes of operation, real and pure simulation mode. In the real train mode, it extrapolates the position of the train between sensor readings. Any requests from the track manager are passed to the command interpreter interface. The main purpose of the interface is to send and receive information from the command interpreter. In pure simulation mode, the simulation engine determines the position of the virtual train at all times. Regardless of the mode of operation, the end result is to provide the position of the train to the UI. Thus, the UI does not need to know whether the train set is real or virtual.

The purpose of the simulation engine is to compute the train location. It will not provide collision detection or train scheduling. The computation requires data from the track manager. This data includes the following information:

1.
Speed of the train as selected from the user interface.

2.
Length of each track piece from the last sensor to the next sensor.

3.
Time elapsed since the train was last sensed.

4.
Positions for any switches between the last sensor and next sensor.

5.
Speed ratio differences for various pieces of track.

Using this information, the simulator can compute when the train will be on the subsequent piece of track and report the result to the track manager, which eventually passes the information to the user interface.

The simulation engine will contain a short-circuit block which acts as a switch between pure simulation and real train mode. This block controls whether commands are passed to the command interpreter interface or short-circuited. In real train mode the commands are allowed to pass and acknowledgements from actual devices are allowed to respond to the track manager. In pure simulation mode the commands are short-circuited and acknowledgements are automatically generated by the short-circuit block instead.

Information that is sent to the command interpreter includes new positions for track switches, activation of crossings and lights, and desired speeds of trains. Information that is received includes sensor readings, positions of track switches, crossing and light statuses, and actual train speeds. The exact format of commands that can be sent and received between the interface and the command interpreter must be finalized, verified, and validated. Request commands that are issued by the track manager will pass through the short-circuit block via function calls in the simulation engine in order to reach the interface. Information coming from the real track would pass through the short-circuit block and reach the track manager via function calls.

The simulation engine will provide the core computations required to determine when the train will occupy the next piece of track. This calculation can be accomplished quite easily using the following formula:

 time = distance to be travelled (speed

The engine will ask the track manager for all of the required data to perform the computation. Once it has the answer, it will be given to the track manager. A general algorithm of the computation is provided below to demonstrate the simulation task.

1.
Start timer as soon as train passes first sensor.

2.
Get current piece of track and length of it.

3.
Get speed of train.

4.
If current piece has a fork, get switch position.

5.
Calculate how long until train enters next piece of track using v=d/t --> t=d/v and speed ratio for current track type.

6.
Get speed of train.

7.
If speed of train has changed, determine remaining length to be travelled, and go to step 5.

8.
If switch position of current track has changed before train has passed over switch, determine new remaining length to be travelled, and go to step 5.

9.
When time t has passed, tell track manager that train is on next piece of track. Go to step 2 and repeat algorithm.

10.
If next sensor senses train has passed but simulated location is behind, replace calculated train position with actual, and go to step 1.

11.
If calculated train has reached next sensor and actual sensor shows no reading yet, pause simulated train location and waiting until sensor shows that real train has passed before going to step 1.

Acceleration is not taken into account because actual acceleration of the train is very short in duration. The frequent velocity measurements and distance calculations will automatically incorporate such accelerations.

The simulation engine will contain extra functions for future expansion capabilities. Future expansion could include developing a train scheduler and a collision detection component. The simulation engine will contain functions to calculate the location of the train at any desired time, based on the current state of the system. Also, based on the current state of the system, a user may ask the simulation engine how long before the train passes a specific piece of the track. For example, a collision detector could ask the simulation engine for the time at which train #1 will reach switch #1. It can also ask for when train #2 will reach that same switch. If the time differences are quite small, a collision may occur at the calculated time. The collision detector would stop or slow down one of the trains to prevent the collision.

The required level of granularity in train position may be different than anticipated. If a higher level of detail is required, to enable smooth train movement in the UI, the half-way point of each track piece can be determined and the above algorithm can be used to provide twice the amount of granularity. If an even higher level of detail is required, each track piece can be divided into quarters instead.

Evaluation
Extensive testing must be performed on the interfaces between the control manager and track manager as well as the control manager and UI. Since a functional track manager and UI will not be available for most of the development cycle, simple test programs must be developed to simulate those two components. This will help evaluate the performance of these interfaces.

The fault tolerance algorithm will require more extensive testing that will not be available until the entire simulator is finished. A list of possible situations must be compiled and fed into the simulation to examine if the fault tolerance algorithm works as desired. The list of situations must be extensive enough to be assured of reliability.

The track manager will be evaluated based upon its speed and ability to keep up with requests as well as its ability for providing mutual exclusion for multiple users. The algorithms that are produced must be designed to ensure this fast service rate.

Testing will be performed to ensure the simulator accurately locates the position of the train. Evaluation criteria for the simulation engine include the following:

1. Accuracy in modeling real train.

· Average time difference and variance between calculated and actual arrival of train at next sensor.

· Confidence intervals in calculations.

2. Appropriate level of granularity in train position.

Time Line

Activities

The following major tasks have been identified to complete the control manager:

1. Determine how hardware layout will look and function.

2. Define interface with track manager.

3. Define rules to avoid conflicting requests from user and collisions.

4. Define command set with UI team.

5. Design protocol to communicate with UI.

6. Design and implement code for sub-components.

7. Integrate and test control manager sub-components.

The following major tasks have been identified to complete the track manager:

1. Linked list design, coding and testing for track layout.

2. Develop and test algorithm for track info retrieval.

3. Algorithm for matching user requests with actual track conditions.

4. Integrated testing of components.

The following major tasks have been identified to complete the simulation engine:

1. Obtaining speed ratio differences of various pieces of track.

2. Account for difference loads in the ratios.

3. Write simulation engine code and perform unit testing.

4. Add adjustments to accurately model physical characteristic of train.

5. Determining the right level of granularity for train positions.

6. Develop short-circuit block.

7. Unit testing of the simulation engine without short-circuit block.

8. Unit testing of short-circuit block.

9. Unit testing of complete simulation engine component.

Milestones

1. Completion of development and debugging of control manager.

2. Completion of development and debugging of track manager.

3. Completion of simulation engine that models real, physical train within a 10 % error tolerance level.

4. Completed integration of all simulation software components.

5. Completion of project integration with the user interface group, resulting in a functional user interface and simulation component. (Working pure simulation mode)

6. Completion of integration with command interpreter group.

7. Completion of software integration.

8. Completion of hardware and software integration. (Working real train mode)

Budget
There is no budget required for the simulation project because it is completely software based. Development of the software can take place at the engineering computer labs. These labs are equipped with all the necessary software including C/C++ compilers, Java development kits, and text editors. Other groups, however, may require budgets.

Interface to UI

Control Manager

Track Manager

Track State Database

Simulation Engine

Figure 1 : Components of the simulation software.

Interface to

Command Interpreter

Track Layout Database

(Temporary)

User requests

Previous

 Next

Type: Corner

Piece ID number: 2

Length: 5 cm

Type: Straight

Piece ID number: 3

Length: 10 cm

Previous

Next

Validated requests

Track updates

Track updates

Track updates

User requests

UI

Processed requests

Command Interpreter

 Track layout reads

Track state reads

Track state writes

 Requests to real track

 Requests to real track

Responses from

real / virtual track

 Responses from real track

 Responses from real track

Figure 3: Sample of the track layout structure

Simulation Software

Figure 2 : Possible track pieces

curve

straight

left switch

right switch

crossing

PAGE
17

